a2 United States Patent

Gutti et al.

US009424296B2

US 9,424,296 B2
Aug. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54)
(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

INDEXING OF DATABASE QUERIES
Applicant: Infoblox Inc., Santa Clara, CA (US)
Inventors: Srinath Gutti, Sunnyvale, CA (US);

Stuart M. Bailey, San Jose, CA (US);
Ivan W. Pulleyn, Sunnyvale, CA (US)

Assignee: Infoblox Inc., Santa Clara, CA (US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 526 days.
Appl. No.: 13/929,424
Filed: Jun. 27,2013
Prior Publication Data
US 2014/0012827 A1l Jan. 9, 2014

Related U.S. Application Data

Continuation of application No. 13/035,858, filed on
Feb. 25, 2011, now Pat. No. 8,498,973, which is a
continuation of application No. 11/200,849, filed on
Aug. 10, 2005, now Pat. No. 7,917,482.

Int. Cl1.

GO6F 17/30 (2006.01)

GO6F 7/00 (2006.01)

GO6F 17/00 (2006.01)

U.S. CL

CPC GO6F 17/30336 (2013.01); GOGF 7/00

(2013.01); GOGF 17/30457 (2013.01); GO6F
17/30501 (2013.01); GO6F 17/00 (2013.01)

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,993,530 B2* 12006 Lee GO6F 17/30557
707/769

2002/0129001 Al* 9/2002 GO6F 17/5004
2002/0161745 Al* 10/2002 Call ..o A61L 2/10
2005/0055355 Al* 3/2005 GO6F 17/30914

* cited by examiner

Primary Examiner — Jay Morrison
(74) Attorney, Agent, or Firm — Van Pelt, Yi & James LLP

(57) ABSTRACT

Making data available from a database is disclosed. Making
data available includes specifying a query function having a
query function name, wherein the query function includes a
structure and a member, determining the structure and the
member included in the query function, wherein the query
function has a query function name and includes the structure
and the member, creating an index for the structure on the
member, and compiling the query function to be available to
a user by invoking the query function name without the user
having to specify the structure and the member. Retrieving
data from a database is disclosed. Retrieving includes invok-
ing a query function that specifies a plurality of structures and
a value, accessing a cross index of the plurality of structures,
and using the cross index to access the data.

20 Claims, 4 Drawing Sheets

mmbum_;g

alo|alo|o|o|x

olal-]-]a]~]|=

o|w|a|e|o|o|N

202

xea

ca

xeh

ch

N e [=]

y.o.0

c.c

&fesfraf 2] e

zed

c.a

- 204

v_structiiv_member#c.a

v_shructily_member#ic.b

v_struct¥v_membanid.c

208 — *o4 208

xeb

210 ~— ¥co

2.ca

3

4

5

U.S. Patent Aug. 23,2016 Sheet 1 of 4 US 9,424,296 B2

{1

Key X Y Z
1 a r b
2 b g b
3 c r a
4 d r c
5 C g a
5] d g b — 12
t1#Z#a t1HZ#Hh Q2
5 2
8

FIG. 1

U.S. Patent Aug. 23,2016 Sheet 2 of 4 US 9,424,296 B2

£
Key X Y 4
1 a r b
2 b { b
3 C r a
4 d r c
5 C g a
& d g b 202
2
Key J K L
X.0.8 X 0.8 1
X.c.h X o5} 2
¥.C.0 ¥ c.C 3
7.6.8 Z c.a 4 —— 204
v_stiucHv_member#c.a v structv_memberdic.b v_structy_memberfid.c
208 —— KC@ 208—1 xcb 210 — y.oo
z.c.a 4

FiG. 2

U.S. Patent Aug. 23,2016 Sheet 3 of 4 US 9,424,296 B2

Determine Structure, Mambear in
Query Function

304 —
Create index for Structure on
Member
a8 —
Compile Query Function
308 —

FIG. 3

U.S. Patent

Aug. 23, 2016 Sheet 4 of 4

invoks Guery Function

402 —
Accass Index
404 — ‘
Ancess Data
406 —

FIG. 4

US 9,424,296 B2

US 9,424,296 B2

1
INDEXING OF DATABASE QUERIES

CROSS REFERENCE TO OTHER
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 13/035,858, entitled INDEXING
OF DATABASE QUERIES filed Feb. 25, 2011, which is a
continuation of U.S. patent application Ser. No. 11/200,849,
now U.S. Pat. No. 7,917,482, entitled INDEXING OF DATA-
BASE QUERIES filed Aug. 10, 2005 all of which are incor-
porated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

Database queries can be indexed to increase the speed of
lookups. For example, a frequently made query may be
indexed by maintaining a separate list of all objects that
satisfy that query. Whenever that query is made, the resultcan
be obtained by accessing the index rather than searching the
database. Typically, the indexes that are maintained are manu-
ally specified prior to runtime, which can be time consuming.
In addition, some queries may require accessing multiple
indexes, which can take additional processing time. It would
be desirable to have a more efficient method of accessing
data.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the invention are disclosed in the
following detailed description and the accompanying draw-
ings.

FIG.1isadiagram illustrating an example of a table and an
index for that table.

FIG. 2 is a diagram illustrating an example of two struc-
tures and cross index lists associated with those structures.

FIG. 3 is a flowchart illustrating a method of generating an
index from a query function.

FIG. 41is a flowchart illustrating a method of retrieving data
using an index.

DETAILED DESCRIPTION

The invention can be implemented in numerous ways,
including as a process, an apparatus, a system, a composition
of matter, a computer readable medium such as a computer
readable storage medium or a computer network wherein
program instructions are sent over optical or electronic com-
munication links. In this specification, these implementa-
tions, or any other form that the invention may take, may be
referred to as techniques. In general, the order of the steps of
disclosed processes may be altered within the scope of the
invention.

A detailed description of one or more embodiments of the
invention is provided below along with accompanying figures
that illustrate the principles of the invention. The invention is
described in connection with such embodiments, but the
invention is not limited to any embodiment. The scope of the
invention is limited only by the claims and the invention
encompasses numerous alternatives, modifications and
equivalents. Numerous specific details are set forth in the
following description in order to provide a thorough under-
standing of the invention. These details are provided for the
purpose of example and the invention may be practiced
according to the claims without some or all of these specific
details. For the purpose of clarity, technical material that is

10

15

20

25

30

35

40

45

50

55

60

65

2

known in the technical fields related to the invention has not
been described in detail so that the invention is not unneces-
sarily obscured.

A method of making data available from a database is
disclosed. A structure and a member included in a query
function are determined, an index is created for the structure
on the member, and the query function is compiled. A method
of retrieving data from a database is also disclosed. A query
function that specifies a value is invoked. A cross index is
accessed, where the cross index indexes a virtual structure on
a virtual member that corresponds to the value. The cross
index is used to access the data.

FIG.1isa diagram illustrating an example of a table and an
index for that table. Table 102 has four columns (Key, X, Y,
and 7) and six rows. Each row is associated with a key, where
the key is a unique identifier of that row. For example, as
shown here, the key can be a number that increments by one
for each row. An index can be maintained on any one of
columns X, Y, or Z. For example, index lists 103-106 form an
index on column Z. List 103 (t1#Z#a) is a list of all rows in
table 102 where Z=a. In this example, the list comprises a list
of keys. For example, list 103 lists keys 3 and 5, which
correspond to the rows in table 102 where Z=a. Similarly, list
104 (t1#7#b) is a list of all rows in table t1 where Z=b. List
106 (t1#7#c)is alistofall rows intable t1 where Z=c. As used
herein, the notation <structure>#<member>#<value> is used
to represent the objects (rows) in <structure> where
<member>=<value>. For example, t1#7#a represents list
103, t1#7#b represents list 104, and t1#Z#c represents list
106. In some embodiments, the lists are accessed using a hash
table, where the hash key is also of the form
<structure>#<member>#<value>. For purposes of explana-
tion, a table having columns and rows are used in this and
some of the following examples. However, any structure hav-
ing members and objects of that structure type may be used in
these examples.

Insome embodiments, a query function specifies a query in
a markup language, such as Extensible Markup Language
(XML). When the markup language is compiled, the query
can be made by calling the query function. Indexes can be
derived from these query functions and automatically gener-
ated when the markup language is compiled.

The following is an example of a query function expressed
in an XML (Example 1):

<function name = “select__t1">
<argument name = “x”>
<argument name = “z"">
<return name = query = “select * from t1 where (X = ‘${x}’) and (Z
= ${z) >

</function>

In this example, a function with two arguments (x and z) is
specified. The function returns objects in structure t1 where
X=x and Z=z. When this code is compiled, an index on X and
anindex on Z are automatically generated. For example, if the
possible values of X are a, b, ¢, and d, then the index on X
would include: t1#X#a, t1#X#b, t1#X#c, and t1#X#d. If the
possible values of Z are a, b, and ¢, the index on Z would
include: t1#Z#a, t1#Z#b, and t1#Z#c. In one embodiment, the
possible values of X and Z are specified in XML. Once the
indexes are generated, queries for objects in structure tl
where X=x and 7=z are satisfied by accessing the correspond-
ing indexes. For example, if the query “select * from t1 where
X=c and Z=a”is submitted, lists t1#X#c and t1#Z#awould be
accessed. The intersection of those lists would then be com-
puted and returned.

US 9,424,296 B2

3

In some embodiments, to avoid having to compute the
intersection, an index could be maintained on the intersection
of X and 7. For example, if X can have one of four values and
Z can have one of three values, a total of 12 (=4*3) lists would
be generated, i.e., the index would comprise the following
lists: t1#X&7Z#a.a, t1#X&ZH#a.b, t1#X &Z#a.c, t1#X&Z#b.a,
tI#X&ZHbb, t1#X&Z#b.c, t1#X&Z#Hc.a, t1#X&Z#c.D,
tl#X & Z#c.c, t1#X&ZH#Hd.a, t1#X&Z#d.b, and t1#X&Z#d.c.
Thus, if the query “select * from t1 where X=c and Z=a" is
submitted, list t1#X&Z#c.z would be accessed.

In some embodiments, indexes that might be desired in the
future can be specified in the markup language. For example,
if there is a possibility that an index on column Y would be
needed, this can be specified in the markup language. If that
index needs to be generated in the future, it could be done
without recompiling the XML..

FIG. 2 is a diagram illustrating an example of two struc-
tures and cross index lists associated with those structures. In
this example, the structures are table 202 (t1) and table 204
(12). Table 202 has six objects (rows) each having four mem-
bers (columns): Key, X, Y, and Z. Table 204 has four objects
each having four members: Key, I, K, and L. In table 204, the
Key is a concatenation of member J and member K, where in
this example, values are concatenated with the “”” character.

A cross index can be formed on a combination of members
from more than one table. A cross index can be viewed as a
virtual table (structure) of objects from one or more tables.
For example, a cross index on K in table t2 and X concat-
enated with Z in table t1 would include index lists 206-210.
List 206 (v_structf#fv_member#c.a) is a list of objects in table
12 where K=c.a and objects in table t1 where X.Z=c.a (i.e., the
value of X concatenated with the value of Z has the value
“c.a”). v_struct is the virtual member comprising K from
table t2 and X.Z from table t1. X and Z may be concatenated
in any way or combined in any other way to form a virtual
member of the cross index. In some embodiments, as shown
here, the list comprises a list of object keys. For example, list
206 includes objects with keys x.c.a, z.c.a, 3, and 5.

Similarly, list 208 (v_struct#v_member#c.b) is a list of all
objects in table t2 where K=c.b and all objects in table t1
where X.Z=c.b. List 210 (v_struct#v_member#d.c) is a list of
all objects in table t2 where K=d.c and all objects in table t1
where X.Z=d.c. Other lists included in this cross index, e.g.,
v_struct#v_memberi#c.c, v_struct#v_member#a.b,
v_struct#v_member#b.b, and v_struct#v_member#d.a, are
notshown. In some embodiments, the index is accessed using
a hash table, where the hash key is of the form
<cross_index_structure>#<cross_index arg>#<value>. For
example, list 206 has hash value “v_struct#v_member#c.a”.

Cross indexes can be expressed in a markup language, such
as XML. The cross indexes are derived and generated from
the markup language cross index specification when the
XML is compiled.

The following is an example of a cross index expressed in
an XML (Example 2):

<cross__index name = “v__struct” arg = “v__member”>
<cross__structure name = “t1”>
<member name = “X">
<member name = “Z”>
</cross__structure>
<cross__structure name = “t2”>
<member name = “K”>
</cross__structure>
</cross__index>

In this example, the query function for this cross index
(v_struct) has one argument (v_member). The function

10

40

45

55

60

65

4

returns the objects in structure t1 where X.Z=v_member and
the objects in structure t2 where K=v_member.

Ifthe possible values of v_memberare c.a, c.b, c.c,ab, b.b,
d.c, and d.a, then the lists comprising the cross index would
include: v_struct#v_member#c.a, v_struct#v_member#c.b,
v_struct#v_memberi#c.c, v_struct#v_member#a.b,
v_struct#v_member#b.b, v_struct#v_member#d.c, and
v_struct#v_member#d.a.

The following is another example of a cross index (Ex-
ample 3):

<cross__index name = “bind__fqdn” arg = “fqdn”>
<cross__structure name = “NS”>
<member name = “ns_ name’”>
<member name = “ns__zone’>
</cross__structure>
<cross__structure name = “A”>
<member name = “X">
</cross__structure>
</cross__index>

The structures included in this cross structure are an NS
structure and an A structure, which are part of a DNS server.
The members of the NS structure included in this cross index
are ns_name and ns_zone. The member of the A structure
included in this cross index is X. For example, if “www”,
“mail”, and “ftp” are the possible values of ns_name, “infob-
lox.com” and “examplel.com” are the possible values of
ns_zone, and “www.infoblox.com”, “mail.infoblox.com”,
“fip.infoblox.com”, and “www.examplel.com” are the pos-
sible values of X, the index for this structure would include

the following index lists:
bind_fqdn#fqdn#www.infoblox.com,
bind_fqdn#fqdn#mail.infoblox.com,
bind_fqdn#fqdn#ftp.infoblox.com, and

bind_fqdn#fqdn#www.examplel.com.

This index may be used when a query for records (objects)
with a particular fully qualified domain name (FQDN), such
as “www.infoblox.com” that does not specify a record type is
received. In this case, all NS and A record types associated
with that FQDN are returned. The bind_fqdn cross index with
fqdn="www.infoblox.com”
(bind_fqdn#fqdn#www.infoblox.com) accesses both the A
records in which name is “www.infoblox.com”, and the NS
records in which ns_name is “www” and ns_zone is “infob-
lox.com”.

This cross index forms a virtual structure of NS records and
A records with virtual member v_member. If viewed as a
virtual table, the virtual structure does not necessarily have
the same number of columns in each row, as would be the case
when the A structure has a different number of members from
the NS structure. Any number of structures and members can
be included in a cross index. For example, within a DNS
server, other types of records (e.g., CNAME, MX, TXT) that
include FQDN information may be useful to include in the
cross index of Example 3. By including all record types that
include FQDN information in the cross index structure, one
index could access all structures in the DNS server database
related to “www.infoblox.com”.

In some embodiments, a markup language such as XML is
used to specify a structure, a member, a query function, and/or
a cross index. In some embodiments, the query functions and
cross indexes that are specified have been determined to be
frequently made queries based on usage profiles or historical
data.

In some embodiments, once indexes and cross indexes are
created, they are updated whenever there is a write operation
(e.g., add, insert, delete) performed on the database that
affects that index. For example, each time a record is inserted

US 9,424,296 B2

5

in the database, it is determined whether an index includes
that type of record and if so, that record is inserted into the
index.

Example 1 can also be specified in a cross index that
includes one structure and two members, as follows (Ex- 5
ample 4):

<cross__index name = “select_t1” arg = “t1__arg”>
<cross__structure name = “t1”>
<member name = “X">
<member name = “Z”>
</cross__structure>
</cross__index>

10

In this case, since X can have one of four values and Z can 15

have one of three values, a total of 12 (=4*3) lists are main-
tained, ie., the lists select_t1#tl_arg#a.a,
select_t1#tl_arg#a.b, select_t1#t1_arg#a.c, select_tl1#t1_arg
#b.a, select_t1#t1_arg#b.b, select_t1#tl_argtb.c,
select_t1#tl_arg#c.a, select_t1#tl_argtic.b,
select_t1#tl_argtc.c, select_t1#t1_arg#d.a,
select_t1#tl_arg#d.b, and select_t1#t1_arg#d.c would com-
prise the index. Thus objects in t1 with any combination of
values of X and Z can be quickly accessed.

FIG. 3 is a flowchart illustrating a method of generating an
index from a query function. A structure and member in a
query function are determined (304). For example, the struc-
ture or member may be specified in a function or cross index
expressed in XML, as described above. An index on the
member is created (306). For example, a plurality of lists,
each corresponding to a possible value of the member, may be
generated, as described above. In the case of a cross index, the
index may be on a virtual member. The query function is
compiled (308). For example, if a function or cross index is
specified in XML, the XML is compiled so that it is available
by calling the query function name without specifying the
structures in the query function.

FIG. 41is a flowchart illustrating a method of retrieving data
using an index. A query function is invoked (402). For
example, “bind_fgdn(www.infoblox.com)” or “select * from
t1 where X=c and Z=b" is called. In this example, “bind_fqdn
(www.infoblox.com)” is the syntax for a query that returns all
objects associated with FQDN “www.infoblox.com”. An
index is accessed (406). For example, in the case of “bind_
fgdn(www.infoblox.com)”, the cross index bind_fqdn is
accessed. In the case of “select * from t1 where X=c and
Z=b”, the index t1#X&Z is accessed. The data is accessed
(408). For example, in the case of “bind_fqdn(www.infob-
lox.com)”, the list bind_fqdn#fqdn#www.infoblox.com is
accessed. In the case of “select * from t1 where X=c and
Z=b”, the list t1#X&Z#c.b is accessed, or the lists t1#7#c and
t1#Z#b are accessed and the intersection determined.

Although the foregoing embodiments have been described
in some detail for purposes of clarity of understanding, the
invention is not limited to the details provided. There are
many alternative ways of implementing the invention. The
disclosed embodiments are illustrative and not restrictive.

25

30

What is claimed is:

1. A method of retrieving data from a DNS database,
including: 60
invoking a query function for querying the DNS database
using a processor, wherein the query function specifies a
plurality of structures and a value; and wherein the DNS
database includes a first structure and a second structure;
accessing a cross index of the plurality of structures, 65
wherein a first member of the first structure is concat-
enated with a second member of the second structure to

6

form a third member of the cross index; and wherein the
cross index indexes a structure on a member that corre-
sponds to the value;

using the cross index to access the data; and

automatically updating the cross index each time a write

operation is performed that affects the cross index.

2. A method as recited in claim 1, wherein the query func-
tion is specified in a cross index structure.

3. A method as recited in claim 1, wherein the member
includes a key of a structure, wherein the key uniquely iden-
tifies an object.

4. A method as recited in claim 1, wherein the cross index
includes a list of objects.

5. A method as recited in claim 1, wherein the cross index
includes a plurality of lists corresponding to each of the
possible values of the member.

6. A method as recited in claim 1, wherein the cross index
includes a list of keys wherein each key uniquely identifies an
object.

7. A method as recited in claim 1, wherein the query func-
tion is specified in a markup language.

8. A method as recited in claim 1, wherein the structure and
the member are specified in a markup language.

9. A system for making data available from a DNS data-
base, including:

a processor configured to:

invoke a query function for querying the DNS database,

wherein the query function specifies a plurality of struc-
tures and a value; and wherein the DNS database
includes a first structure and a second structure;

access a cross index of the plurality of structures, wherein

a first member of the first structure is concatenated with
a second member of the second structure to form a third
member of the cross index; and wherein the cross index
indexes a structure on a member that corresponds to the
value;

use the cross index to access the data; and

automatically update the cross index each time a write

operation is performed that affects the cross index; and
amemory coupled with the processor, wherein the memory
provides the processor with instructions.
10. A system as recited in claim 9, wherein the cross index
includes a list of objects.
11. A system as recited in claim 9, wherein the cross index
includes a plurality of lists corresponding to each of the
possible values of the virtual member.
12. A system as recited in claim 9, wherein the cross index
includes a list of keys wherein each key uniquely identifies an
object.
13. A system as recited in claim 9, wherein the query
function is specified in a markup language, and wherein the
structure and the member are specified in a markup language.
14. A computer program product for retrieving data from a
DNS database, the computer program product being embod-
ied in a tangible non-transitory computer readable medium
and comprising computer instructions for:
invoking a query function for querying the DNS database,
wherein the query function specifies a plurality of struc-
tures and a value; and wherein the DNS database
includes a first structure and a second structure;

accessing a cross index of the plurality of structures,
wherein a first member of the first structure is concat-
enated with a second member of the second structure to
form a third member of the cross index; and wherein the
cross index indexes a structure on a member that corre-
sponds to the value;

using the cross index to access the data; and

automatically updating the cross index each time a write

operation is performed that affects the cross index.

US 9,424,296 B2
7

15. A computer program product as recited in claim 14,
wherein the query function is specified in a cross index struc-
ture.

16. A computer program product as recited in claim 14,
wherein the member includes a key of a structure, whereinthe 5
key uniquely identifies an object.

17. A computer program product as recited in claim 14,
wherein the cross index includes a list of objects.

18. A computer program product as recited in claim 14,
wherein the cross index includes a plurality of lists corre- 10
sponding to each of the possible values of the member.

19. A computer program product as recited in claim 14,
wherein the cross index includes a list of keys wherein each
key uniquely identifies an object.

20. A computer program product as recited in claim 14, 15
wherein the query function is specified in a markup language,
and wherein the structure and the member are specified in a
markup language.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 09,424,296 B2 Page 1of1
APPLICATION NO. : 13/929424

DATED - August 23, 2016

INVENTOR(S) : Gutti et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

In Column 6, Line 45, after “possible values of the”, delete “virtual”.

Signed and Sealed this
Twenty-fifth Day of April, 2017

Tcbatle X Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

